
I2C

Embedded Workshop 10/28/15 Rusty Cain

Set up for Workshop: Please Sign in on Sheet. Please include your email.

While you are waiting for the Workshop to begin…

1. Make sure you are connected to the local Wifi
Guest Password: Welcome2DMS

 2. Make sure you have Arduino IDE installed and
working:

Download Arduino Version 1.6.4 or newer.
Add the Wire.h library
Sketch - Include Libraries - Manage Libraries - Wire?

 3. Copy Programs off the USB Memory stick.
Project1, Project2, Project3, Project4 &
Extra Project

Parts Needed: (Ask about Parts kits)
Arduino Uno,
Breadboard & Wires,
3 - LED’s,
3 - 330 ohm resistors,
1- TC74 Temp sensor,
1- I2C eeprom

I2C -TWI Bus
I²C Bus

The I²C bus was designed by Philips in the early ’80s
to allow easy communication between components
which reside on the same circuit board.

Philips Semiconductors migrated to NXP in 2006.

The Inter-Integrated Circuit name translates:
 IIC, I2C I²C or TWI

TWI Bus
TWI stands for Two Wire Interface. This bus is
identical to I²C. The name TWI was introduced by
Atmel and other companies to avoid conflicts with
trademark issues related to I²C.

Most significant features include:
● Only two bus lines are required
● No strict baud rate requirements like for

instance with RS232.
● The master generates a bus clock.

a. Bus can have different clock speeds.
i. CLOCK_SPEED_10_KHZ

ii. CLOCK_SPEED_50_KHz

iii. CLOCK_SPEED_100_KHZ

iv. CLOCK_SPEED_400_KHZ

● Simple master/slave relationships exist
between all components

● Each device connected to the bus is
software-addressable by a unique address

● I2C is a true multi-master bus providing
arbitration and collision detection

http://www.nxp.com/
http://www.i2c-bus.org/MultiMaster/

I2C Overview
The devices on the I2C bus are either masters or
slaves.

Master This is the device that generates clock, starts
communication, sends I2C commands and stops
communication

Slave This is the device that listens to the bus and is
addressed by the master

Multi-master I2C can have more than one master and
each can send commands

Arduino already has pull-up resistors on the SDA and SCL
pins. All though this would not hurt the circuit it’s not needed
because when the Wire.h library is initialized it knows pins 4
and 5 are going to be used for I²C so it also activates the
built-in pull-up resistors.

Bus Example: Refer to Data sheet for Resistor values

The I²C bus’ master uses a device’s 7-bit address to signal the
component it wants to talk to and is shifted left to create an 8-bit value

I2C Bus & Addressing
I²C bus uses a 7-bit address that is passed along with a
read/write bit. Since a byte comprises eight bits.
The extra bit is used to indicate whether the signal is being sent
by the master to the slave as a ‘write’ or a ‘read’.
Because of the I²C addresses being 7-bit numbers enables the
bus to comprise up to 127 devices.
The 7-bit address is placed in bits one through seven.

The Arduino takes care of the last R/W bit for us depending
on what function we’re using so as long as you’re using the
standard Arduino Wire library.

The Seven middle address bits.
The first four bits(Control Code) are hard-wired and can’t be
changed.
The next three bits(A2,A1,A0) are the important bits and we
can change them.
What address the chip will have is dependent on what we set
these pins to.
Tie pins 1,2 and 3 on the 24LC256 to GND then the chip
would have address 0×50 and if tie them all Vcc then the chip
would have address 0×57 .

I2C Bus Data Transfer

Data transfer sequence
1. Send the START bit (S).
2. Send the slave address (ADDR).
3. Send the Read(R)-1 / Write(W)-0 bit.
4. Wait for/Send an acknowledge bit (A).
5. Send/Receive the data byte (8 bits) (DATA).
6. Expect/Send acknowledge bit (A).
7. Send the STOP bit (P).

Repeated START (Sr)
The main reason that the Sr bit exists is in a multi master configuration
where the current bus master does not want to release its mastership.
Using the repeated start keeps the bus busy so that no other master can
grab the bus.

Data Transfer from master to slave
A master device sends the sequence S ADDR W and then waits
for an acknowledge bit (A) from the slave which the slave will
only generate if its internal address matches the value sent by
the master. If this happens then the master sends DATA and
waits for acknowledge (A) from the slave. The master completes
the byte transfer by generating a stop bit (P) (or repeated start).

Data transfer from slave to master
Instead of W, R is sent. After the data is transmitted from the
slave to the master the master sends the acknowledge (A). If
instead the master does not want any more data it must send a
not-acknowledge which indicates to the slave that it should
release the bus.

I2C PinOut Overview

I2C & Arduino
In order to use the I²C interface we need to include the Arduino
standard Wire library #include <Wire.h>

Need to define the address for your device
#define disk1 0x50 //Address of 24LC256
#define Temp 0x50 //Address of TC74A0
int address = 72; //Decimal Address of TC74A2

Note: Arduino versions before 1.0 use Wire.send and Wire.
receive
If you are using Arduino 1.0 and above then you need to use
Wire.write and Wire.read

Analog port 4 (A4) = SDA (serial data)
Analog port 5 (A5) = SCL (serial clock)

Communication Between Arduinos Using I²C

Arduino Board I2C pins

Uno, Pro Mini A4 (SDA), A5 (SCL)

Mega, Due 20 (SDA), 21 (SCL)

Leonardo, Yun 2 (SDA), 3 (SCL)

I2C Projects 1, 2, 3, 4, 5

Project 1
I2C Scanner Tool.

Project 2
Read TC74 Temperature Sensor & Display to

console.
Project 3

Write to & Read from eeprom
Project 4

Read TC74 Temp and Write to eeprom.
Project 5

Use &View with Logic Analyzer.
Project Extra

Connect 2 Arduino Uno together using I2C

Set up your breadboard with your I2C devices
Connect your breadboard to the Arduino.

TC74 Pinout
Arduino analog pin 4 to TC74 pin 2
Arduino analog pin 5 to TC74 pin 4
Arduino 5V to TC74 pin 5
Arduino GND to TC74 pin 3
Arduino Pin 12 to Green LED
LED Resistor to GND

I2C Project 1 & 2 Wiring using TC74 Temperature Sensor

Project 1- I2C Scanner
Download I2C Scanner

http://playground.arduino.cc/Main/I2cScanner
Connect your I2C devices to your Arduino Bd.

This program will Scan for all devices on the I2C bus and
report back all the device address found.

http://playground.arduino.cc/Main/I2cScanner
http://playground.arduino.cc/Main/I2cScanner

Project 2 Read TC74 Temperature Sensor

TC74Ax
TC74 always operates as a Slave
TC74A0 in TO-220 package.
A0 corresponds to the device address 1001 000 (72)
A1 corresponds to the device address 1001 001 (73)

Pinout
Arduino analog pin 4 to TC74 pin 2
Arduino analog pin 5 to TC74 pin 4
Arduino 5V to TC74 pin 5
Arduino GND to TC74 pin 3

Refer to the TC74 datasheet

http://ww1.microchip.com/downloads/en/DeviceDoc/21462D.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/21462D.pdf

Project 3 -Write & Read to eeprom

Connect 24LC256 eeprom To Arduino Uno

Arduino analog pin 11 to LED on Bread Bd.
Arduino analog pin 12 to LED on Bread Bd.
Arduino analog pin 4 (A4) to EEPROM pin 5. SDA
Arduino analog pin 5 (A5) to EEPROM pin 6. SCL
Arduino 5V to EEPROM pin 8 VCC.
Arduino GND to EEPROM pin 1,2,3,4
Pin 7 of the EEPROM tie it to GND otherwise the
EEPROM will be write protected

24LC256 Data Sheet

http://ww1.microchip.com/downloads/en/DeviceDoc/20001203U.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/20001203U.pdf

I2C Project 3 Wiring using eeprom 24LC256

Now let's tie it all together.
Load Program for Project 4
I2c_EEPROM_Workshop_Project_4

Project 4 -Read Temperature Sensor and Write to eeprom

Project 5 Arduino I2C Bus connected to Logic Analyzer

Configuration Logic Analyzer
Analyzers - I2C
Configuration - Edit Settings
Display - Decimal

Connect probe channel 1 to SDA pin A4
Connect probe channel 2 to SCL pin A5
Name channel 1 SDA - Name Channel 2 SCL
Address Display to 7 -bit address bits only

