
 AVR Microcontroller Programming

Embedded Workshop 8/26/2015

AVR Microcontroller Programming

The Basics Steps of Microcontroller
Programming

Agenda
1. Overview of the Atmel AVR Chipset.
2. Overview of Programming the AVR Chipset.
3. Overview of the different types of Programmers and Target boards.

a. USBTiny, USBasp, Arduino as ISP etc…

4. Overview of Writing and Compiling Code with the different types of IDE’s.
a. Arduino IDE, WinAVR (AVRDUDE), Atmel Studio 6

5. Software Change Control.
6. Building an Arduino Shield Target Board.
7. How to program the ATTiny84/85 using the Arduino Uno and a Breadboard.

AVR Chipset
AVRs are generally classified into following:

● tinyAVR — the ATtiny series

● 2–8 kB program memory
● 6–32-pin package

● megaAVR — the ATmega series

● 4–512 kB program memory
● 28–100-pin package
● Extended instruction set
● Extensive peripheral set

● XMEGA — the ATxmega series

● 16–384 kB program memory
● 44–64–100-pin package (A4, A3, A1)
● Extended performance features, such as

DMA, "Event System", and cryptography
support.

● Extensive peripheral set with ADCs

https://en.wikipedia.org/wiki/Analog-to-digital_converter

AVR Ports and Pins
Ports B,C,D {76543210}
 Port B 0b00000000 - B0 - B7

Port C 0bx0000000 - C0 - C6
Port D 0b00000000 - D0 - D7

RS232 PD0-RX(2) PD1-TX(3)
I2c PC4-SDA PC5-SCL
SPI PB3-MOSI PB4-MISO PB5-SCK
Reset PC6(1)

What is an AVR Programmer
AVR programmer connects to your computer’s
via an USB Cable and communicates with your
programming software through a virtual COM
port using the AVR In-Service Programmer
protocol.
Programming software: Atmel Studio,
AVRDUDE, Arduino IDE, Programmers
NotePad etc.
AVR Programmers use SPI protocol (MISO,
MOSI, SCK). Some use JTAG for debugging.

The programmer connects to your target device via
an 6-pin cable or the older, 10-pin cable.
Target Board is used to hold the chip. AVR chip
can stay soldered on a PCB while reprogramming.

AVR Programmer - ISP Six Pin

Examples of AVR programmers
Pocket AVR
Sparkfun

AVR
STK500

USBasp

USBTinyISP

AVRISP

What is an AVR Programmer

Write code for your Microcontroller
The first step is to write your program
code. This is usually done is C. It can
also be done in assembly language and
some compilers support other languages
as well.
The AVR processors was designed with
the efficient execution of compiled C
code and have several built-in pointers
for the task.
Commonly used Software IDE:
 Arduino IDE, Notepad++, Eclipse, Atmel
Studio

Example Code: Arduino Fade
int led = 9; // the pin that the LED is attached to
int brightness = 0; // how bright the LED is
int fadeAmount = 5; // how many points to fade the LED by

// the setup routine runs once when you press reset:
void setup() {
 // declare pin 9 to be an output:
 pinMode(led, OUTPUT);
}

// the loop routine runs over and over again forever:
void loop() {
 // set the brightness of pin 9:
 analogWrite(led, brightness);
 // change the brightness for next time through the loop:
 brightness = brightness + fadeAmount;
 // reverse the direction of the fading at the ends of the fade:
 if (brightness == 0 || brightness == 255) {
 fadeAmount = -fadeAmount ;
 }
 // wait for 30 milliseconds to see the dimming effect
 delay(30);
}

Compile the Code
Before uploading your program to your
microcontroller it needs to be compiled.
Compiling converts the code from
human readable code to machine
readable code.
Arduino uses it IDE to compile your
program.
Other popular compilers for Atmel AVR
chips is avr-gcc.
After compilation you will have one or
more files containing machine code.

Upload the Compiled Code & Flash Memory
The AVR chip has a small amount of nonvolatile
flash memory. Program instructions are stored
in the nonvolatile flash memory.
You can use a dedicated programmer such as
the following:
STK600 , STK500, STK200, AVRISP, AVRISP
mkII, USBtiny, JTAGICE mkI,
Arduino uno.(Use a program ArduinoISP for uploading file).

USBtiny simple USB programmer, (uses
AVRDUDE)
You need a physical connection from your
computer to your microcontroller.

AVRDUDE.EXE
The Arduino IDE uses avrdude in the background. (Arduino as ISP = avrisp)
http://www.nongnu.org/avrdude/user-manual/avrdude_4.html#Option-Descriptions

C:\WinAVR-20100110\bin
Read only: avrdude.conf
avrdude -p t84 -c usbtiny -e -U Flash:w”main.hex” -v
avrdude -p m328p -c avrisp -e -U Flash:w:”blink.h” -vvvv
avrdude -p t85 -c usbasp -e -U Flash:w:”blink.h” -vvvv

-p (microcontroller)
-c (programmer)
-e (erase)
-U <memtype>:r:w:v <filename>
-v verbose
http://www.ladyada.net/learn/avr/avrdude.html

http://www.nongnu.org/avrdude/user-manual/avrdude_4.html#Option-Descriptions
http://www.nongnu.org/avrdude/user-manual/avrdude_4.html#Option-Descriptions
http://www.ladyada.net/learn/avr/avrdude.html
http://www.ladyada.net/learn/avr/avrdude.html

AVRDUDE.EXE
-U <memtype>:r|w|v:<filename>[:
format]:
The important part. This is where we actually get around to telling
avrdude how to put the data onto the chip. This command is rather
complex, but we'll break it down.

<memtype> - can be flash, eeprom, hfuse (high fuse), lfuse (low
fuse), or efuse (extended fuse)

r|w|v - can be r (read), w (write), v (verify)

<filename> - the input (writing or verifying) or output file (reading)

[:format] - optional, the format of the file. You can leave this off for
writing, but for reading use i for Intel Hex (the prevailing standard)

For example:

● To write a file called firmware.hex to the flash use the
command: -U flash:w:firmware.hex

● To verify a file called mydata.eep from the eeprom use the
command -U eeprom:v:mydata.eep

● To read the low fuse into a file use the command -U lfuse:r:
lfusefile.hex:i

Programming with WinAVR
Open programmers notepad.

All Programs > WinAVR-2010010 > Programmers Notepad

Select C/C++, Write your code, Save you code as a Bink.C
file.

Modify the Makefile template by selecting in Windows

All Programs > WinAVR-2010010 >

MFile[WinAVR] (Template pops open)

Select MCU Type > ATtiny85

Change Programmer > stk500v2

Enable Editing of Makefile > usbtiny

Change Port > usb

File Save as into the folder where the Blink.C

Plug programmer is plugged into laptop USB and 6 pin cable
is plugged into the ISP Target Bd.

Tools > [WinARV] Make All

Watch for errors in Results Box - No Errors proceed

Tools > [WinARV] Program

Software Tracking and Change Control

